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Abstract 

The mechanics  o f  an affinety-figid body is investigated on bo th  the  classical and the  
q u a n t u m  level. An affinely-rigid b o d y  is defined as a sys tem o f  material  poin ts  or  a con- 
t inuous  medium in which all affine relations are frozen. Our  t rea tment  is based on the  
general theory o f  sys tems with closed teleparallelisms, presented in Section 2 o f  this 
paper. 

1. Introduction 

In Section 2 of this paper we present the general outline of the mechanics 
of manifolds endowed with the local structure of a group space. The theory 
of the affinely-rigid body presented in the following sections provides us with 
some special examples of such mechanics. However, having in view some 
important physical and geometrical applications, we develop this theory as an 
autonomic subject rather than as a mere example. 

The usual (i.e. metrical) rigid body is a discrete or continuous system of 
material points, the mutual distances of which are fixed by some constraints. 
Hence all metrical relations between elements of such a body are frozen. An 
affinely-rigid body is similarly defined, such that all affine relations between 
its elements remain invafiant during any motion. Obviously, metrical con- 
straints are stronger than the affine ones. 

In a previous paper (Stawianowski, 1974) we have given the simplified 
formulation of the mechanics of affinely-rigid bodies. In particular, connections 
with the usual notions of the theory of continuous media were investigated. 
From the point of view of the theory of the continuum, an affinely-rigid body 
is a medium the deformative behaviour of which is restricted to undergoing 
homogeneous deformations only. 

In the present paper we give the detailed geometrical analysis of the problem 
in terms of the teteparallelisms. 

The theory of affinely-rigid bodies is interesting from the purely geometrical 
point of view at least. Also, we hope it will help us to answer the following 
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philosophical, but interesting, questions: What would happen if we got rid of 
the notion of a metric? In what way would we have to describe the world 
bereft of metric geometry? 

Such problems have been formulated and studied by Bergmann & Brunnings 
(1949). They are not so academic as would appear; moreover, they concern 
the very fundamental aspects of the connection between physics and geometry. 
One hopes such investigations will help us to overcome some remainders of 
the Newtonian dualism of space-time geometry and physical phenomena 
which are still present in general relativity. In fact, the metric tensor (gravita- 
tion) enters into Einstein equations in a quite different way than all other 
physical degrees of freedom, i.e. fields and particles. Besides, it is subject to 
the global restrictions of non-singularity and hyperbolicity; there are no 
counterparts of such restrictions in 'physical' degrees of freedom. Therefore 
gravitation retains some features of a priori, absolute, Newtonian metric 
geometry. That was why Einstein has suspected his equations to be valid in 
the approximation of weak fields and small matter densities only. It seems 
that all efforts to overcome the dualism of gravitation and 'real' physics 
should start with an analysis of theories in amorphous spaces. The mechanics 
of affinely-figid bodies in an affine space without metric, provides us with the 
simplest model of such a theory. The general ideas of such mechanics are 
sketched in Section 5 of this paper. An affinely-rigid body in amorphous 
affine space is an obvious counterpart of the usual rigid body in euclidean 
space. 

Besides such philosophy, we have in view further practical physical 
applications, for example in the theory of large oscillations of molecules, 
small mono-crystals and atomic nuclei. Applications in the dynamics of non- 
primitive crystal lattices seem to be possible, especially in the case of molecular 
crystals; our theory could then be used to describe the additional, internal 
degrees of freedom of lattice points (rotations and deformations of molecules). 
The theory may also be useful in the statistical mechanics of polyatomic gases. 

Applications in the theory of elementary particles are not excluded. In 
fact, kinematical and dynamical symmetries of our theory, based on the full 
linear group GL(n), to some extent seem to be similar to the U(n) symmetries. 
Let us notice that both groups mentioned, GL(n), U(n), are different real 
forms of the same complex Lie group GL(n, C). It is possible that there is 
something deep and non-trivial in this fact. Besides, let us notice that the 
present description of internal degrees of freedom of elementary particles is 
based on metric geometry only- the spin operators generate (two-valued) 
rigid rotations around the point at which the particle is placed. Such a descrip- 
tion is justified with good accuracy by experiments. However, from the 
principal point of view there is something strange and inconceivable in such 
'honouring' of rigid rotations. Even when starting with the a priori fixed 
metric geometry (not the aforementioned 'amorphous' philosophy), it is hard 
to accept the rejection of deformative, affinely-figid rotations. Rather, one 
can expect some reasonable physical corrections when the deformative 
(affinety-rigid) degrees of freedom are allowed ('oscillations' superposed on 
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'gyroscopic rotations'). Obviously, we need not conceive such deformative 
degrees of freedom in the classical sense of the theory of continua. Taking 
the 'deformative' phenomena into account can be achieved by endowing a 
particle with an 'affine spin' generating affine rotations around the point where 
the particle is placed. Let us remember that the usual (metrical) spin describes 
rotational degrees of freedom without suggesting the usual gyroscopic rigid 
rotations of extended particles. 

All problems are investigated in parallel on both the classical and quantum 
level. Our theory is formulated in affine space; however, it is possible to formu- 
late the theory of small ( 'test ') affinely-rigid bodies in a manifold, in particular 
in a curved space-time of general relativity. 

Notations 
Throughout this paper the standard notation of modern books and papers 

on differential geometry and mechanics is consequently used. We refer mainly 
to Sternberg (1964), Lichnerowicz ( 1955), Kobayashi & Nomizu (1963), 
Lang (1962), Abraham (1967) and Trautman (1970). Where geometry of 
phase spaces is concerned we adopt the notation of earlier papers (S~awianowski, 
1972, 1974); it is essentially the same as that of Sniatycki & Tulczyjew (1971) 
and Sniatycki (1973). Let us recall only a few symbols and fix some additional 
o n e s ~  

Natural projections of the tangent and cotangent bundles onto their base 
Q are denoted as rQ : TQ "+ Q, r~: T*Q ~ Q respectively, or, briefly, r, r*. 

The canonical Pfaff form on T*Q will be denoted as WQ, or, in short, w; 
obviously COp =p o TT"~ITpT*Q. When Q is a configuration space of a system 
then (T'Q, dcoQ) is its classical phase space. A vector-field X on T'Q, satis- 
fying the equation X _ldWQ = -dF,  will be denoted as d/~; the function F 
itself is referred to as its generator. Natural lifts of the vector-field X : Q -+ TQ 
to the manifolds TQ, T*Q will be denoted as X' :  TQ --> TTQ, _~ : T'Q-+ TT*Q 
respectively. Their local one-parameter groups are obtained by lifting the local 
group of X by means of the tangent functor T. Let us notice that X could be 
defined by the following conditions as well: (i)_Tr~ G X = X o r~ (X projects 
to Q onto X) and ( i i ) ~ x  COQ = 0. Obviously, X is a hamiltonian vector-field; 
its generator is a function Fx = ( coQ, X). X is an infinitesimal extended point 
transformation in the phase space (T'Q, dcoQ). It will be referred to as the 
canonical lift ofX. ~Sv: V** -+ V, or, in short 6, denotes the canonical iso- 
morphism of the second dual of a linear space V onto V itself: (f ,  6. F )  = 
(F , f ) .  

2. General Outline of Mechanics of  Local Group Spaces 

The general formulation of mechanics on a manifold can be simplified 
when the configuration space of a system is endowed with a teleparallelism. 
This simplification is especially remarkable when the constant vector-fields 
of the teleparallelism form a Lie algebra. The group manifolds of Lie groups 
is the most important example. They are used in the theory of such mechanical 
systems as material points in euclidean space, rigid bodies and affinely-rigid 
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bodies. Some classical problems of mechanics on Lie groups have been inves- 
tigated by Hermann (1972) and Arnold (1966). 

Let us consider a mechanical system, the configuration space of which is 
a smooth manifold Q. Let V be some vector space. 

Definition 2.1 
A smooth mapping I2 : TQ -+ V is said to endow Q with a teleparallelism if, 

for arbitrary q E Q, the restriction ~2 ] TqQ is a linear isomorphism of TqQ onto 
K The mapping El itself will be called a quasivelocity form. 

Let p : R --> Q be arbitrary motion and p': R --> TQ its natural lift to TQ 
(hodograph). (12 o p')(t) is an 12-quasivelocity of  a system at time t E R. In 
many problems (El o p')(t) is much more convenient than the usual generalised 
velocity p'(t). 

12 is said to be bolonomic if there exists an atlas {(Us, Q~)} on Q such 
that Q~ take values in V and arbitrary motion satisfies the equation 

d 
~-~ (Qe o p) = 1"2~ o p '  (2.1) 

where 12e = 12 1TUa. In general, 12 is non-holonomic. 12 gives rise to some V- 
valued differential form on Q, the so-called fundamental fo'rm of the tete- 
parallelism, 0 (El): 

0(12)q = 12 TqQ (2.2) 

The abbreviation 0 will be used as well. 

Definition 2.2 
An l'2-quasimomentum form is a mapping 1;a : T*Q -> V* (denoted in 

short by Z) defined as follows: 

! T~Q = (12 T TqQ) *-1 = (12 ] TqQ) (2.3) 

for arbitrary q E Q. 
Hence, the linear mappings ~ [TqQ, ~ [ T~Q are mutually cogradient. One 

could start with 2; as well, and then define 1"2 as a secondary construction. 
Tensor bundles over manifolds with teleparallelisms become trivial. The 

corresponding trivialisations of the tangent and cotangent bundles are denoted 
as t a  : TQ --> Q x V, t z  : T*Q -> Q x V* respectively Obviously txl(v) = 
('rQ(V), 12(v)), t~ (p) = (~-~(p), 2;(p)) for arbitrary v E TQ, p E T*Q. Arbitrary 
geometric object t on V gives rise-via 12 (more precisely via isomorphisms 
12 [ TqQ)- to  some field over Q. Such a field will be referred as 12-constant or 
the Maurer-Cartan field, and denoted as a t .  When vector-fields X, Y are 12- 
constant then the fundamental form satisfies the following Manrer-Cartan 
equations: 

(dO (12), X A Y ) = - ½( 0 (El), [X, Y] ) (2.4) 

(cf. Kobayashi & Nomizu (1963) and Sternberg (1964)). 
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Let X be an arbitrary differentiable vector-field on Q and X its canonical 
lift to T*Q. The generator Fx of 3~ satisfies the following equation: 

Fx(P) = (2;(p), (g2 o X o ~-~) (p)) (2.5) 

for arbitrary p E T'Q, where (f, v) denotes the value o f f E  V* on v E V. The 
following short-hand notation will be used as well: 

FX = (X, ~2 o X o "c~) (2.5a) 

Proposition 2.1 
The generator F[v] of the canonical lift av of the Maurer-Cartan vector- 

field av,  is given as: 

F[v] (p) = (£(p), v) (2.6) 

for arbitrary p E T*Q. We will write, in short, 

F[v] = (F_,, v) (2.6a) 
Teleparallelism is said to be closed when its Maurer-Cartan vector-fields 

form a Lie algebra in the sense of a commutator, i.e. < gZ, [X, Y] > = constant 
provided < g2, X), < I2, Y> are constant. 

In this paper we are dealing with closed teleparallelisms only. Some problems 
concerning the non-closed case were investigated by Hermann (1972). When a 
teleparallelism is closed the exterior algebra of Maurer-Cartan differential 
forms is closed under the exterior differentiation. This follows from the 
Maurer-Cartan equations. 

The use of quasivelocities and quasimomenta is especially justified and 
advantageous just as in the case of closed teleparalMisms. Arbitrary closed 
teleparalMism gives rise to a Lie algebra structure in V. The corresponding Lie 
bracket of vectors u, v E V will be denoted by the same symbol, as a 
commutator [u, v]. It is uniquely defined by [au,  av]  = a [u, v]. 

The quasivelocity form ~2 is holonomic if and only if the corresponding 
Lie algebra is commutative. 

Proposition 2.2 
Let ~2 be a closed teleparallelism on Q. Denoting the generators of 

hamiltonian vector-fields ~-~ as F[v], we have the following Poisson brackets: 

<F[ul, F M  } = F[[u, v]l (2.7) 
{F[u] , f o  r~} = (au .  f )  o r~ (2.8) 

{ f o  r~, g o r~} = 0 (2.9) 

for arbitrary u, v E V,f, gE CI(Q). 
The equations above are sufficient to calculate any other Poisson bracket. 

In practical calculations one uses the coordinate form of(2.7),  {FA, FB} = 
7ABCFc, where "yAB c are structural constants with respect to some basis {CA} , 
[CA, eB] = "YABC ec,  and FA is  a n  abbreviation for FleA]. 
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Lagrangean mechanics becomes clearer when formulated in Q x V instead 
in TQ. Similarly, hamiltonian mechanics is more natural in Q x V* than in 
T*Q. Let us find the vector-fields on Q x V and Q x V* corresponding to 
fields av', -~  via the action of diffeomorphisms tn,  tx; respectively. 

Proposition 2.3 
Let g2v, Nv be vector-fields on Q x V, Q x V* respectively, corresponding 

to av' ,  av  via the canonical diffeomorphisms t~,  t~. Then: 

(~2v.F)(q,u)=<dF(.,U)q, aVa>+(DuF(q,.), [u, v]) (2.10) 
(Ev .G)(q , f )=(dG( . , f )q ,  aVq)+(f, [v,8.OfG(q, .)]) (2.11) 

for arbitrary q ~ Q, u E V, f E  V*, F E C 1 (Q x V), G E C 1 (Q x V*). (Symbols 
Du, Dy denote the usual derivatives in the sense of  differentiation on vector 
spaces.) 

Instead of the usual phase space ( T ' Q ,  dCOQ) one often makes use of the 
phase space (Q x V*, 7~), where 3'~ = tE l* .dooa. Let ~1: Q x V* -~ Q, ~2" 
Q x V* -+ V* be natural projections onto the first and second component of 
the cartesian product respectively. Making use of the Poisson bracket 
{F, G} = (dF A dG, ~ ) on Q x V*, one can rewrite Proposition 2.2 as follows: 

{ fo  rq ,g  o rrl} = 0 (2.12) 

{(6 -1. v) o rr2, f o  rq} = ( av  . f )  o rr 1 (2.13) 

{(8-1. u)orr2,(8-1, v)orr2}=(8-1.[u, vl)orr2 (2.14) 

for arbitrary u, v E V, f, g E CI(Q). The equations above hold because 

(8 -1.  v) o rr2 o t~  = F[v] 
Now let L " TQ "+R be a Lagrangean of a system. Then, denoting the 

corresponding Legendre transformation as ~.C,g: TQ-+ T*Q (cf. Abraham 
(1967)), we have for arbitrary (q, ~) E Q x V: 

(tx o ~ o  tfil)(q, ~) = (q, D~(L o t~l ) (q , .  )) (2.1 S) 

Consequently one can simply use the Lagrangean A: Q x V'+ R and define 
the Legendre transformation as a mapping ~Z: Q x V-+ Q x V* such that 

;Z (q, ~) = (q, Dr/A) 

In this paper we are mainly concerned with teleparalMisms induced by Lie 
groups of transformations. Let us consider a homogeneous space (Q, G, f ) ,  
where Q is an analytic manifold, G a Lie group and f :  G x Q-+ Q an analytic 
mapping defining the action of G on Q. The abbreviation f(g, q) =gq will be 
used in the case of left action (when f (glg>.)  = f(gl, f(g2,. ))) and, similarly, 
f(g, q) = qg for right actions (i.e. such asf(glg> .) =f(g>f(gl, -)))- The Lie 
algebra of G will be denoted as g and the Lie algebra of Killing fields of G on 
Q as ~I y. The canonical isomorphism of linear spaces g, g/" wilt be denoted as 
of:g -+9Y. When f acts on the left then of is an isomorphism of Lie algebras at 
the same time. When f acts on the right oy is a Lie algebra anti-isomorphism. 



THE MECHANICS OF AN AFFINELY-RIGID BODY 277 

An almost group space is a homogeneous space of Lie group with discrete 
isotropy groups. It is called a group space simply when isotropy groups are 
trivial. 

Almost group spaces are endowed with natural teleparaltelisms because 
Killing vector-fields are then independent at any point. More strictly: 

Arbitrary almost group space (Q, G, f )  gives rise to the closed teleparaltelism 
gg: TQ -~ g such that 

(of .  g'Zf(V))r(v) = v (2.16) 

for arbitrary v E TQ. Roughly speaking, with arbitrary v E TqQ, there is 
associated the only Killing vector-field on Q, which equals v at q. In such a 
way the mechanics on almost group spaces becomes a special case of the 
general theory of systems with teleparallelisms. For example, Proposition 
2.2 implies that 

{F[ul, F[v]} = F[u, v] (2.17) 

when G acts on the left; hence, u -+ Flu] is an isomorphism of Lie algebras. 
Similarly, 

{F[ul ,  F M }  = F[v, u] (2.18) 

when G acts on the right; hence u *->F[u] is an anti-isomorphism of Lie 
algebras. 

Let tf: TQ --* Q x gt, t f  : T*Q -+ Q x g* be trivialisation mappings correspond- 
ing to the teleparaUelism g2 ( Now let Tg, T*g denote the natural lifts of the 
action o f g ~  G on Q to the manifolds TQ, T*Q respectively. In Q x g, 
Q x g* they appear as follows: 

fro Tg o t f  I = f(g, .) xAdg ( 2 . 1 9 )  

t f  o T ' g ©  t f -1  =f(g, .)  xAd~, -1 (2.20) 

when G acts on the left, and 

t ; o  Tg o t f  1 = f(g,  .)  x A d g  I (2.21) 

t :o  T ' g ©  t f -1 = f(g,  .) x A d ~  (2.22) 

when G acts on the right. 
The quantisation procedure for mechanical systems in manifolds has been 

formulated by Mackey (t963). According to him, probability amplitudes des- 
cribing pure quantum states are given by complex densities of weight 1/2 on 
Q (cf. Sternberg (1964)). However, when Q is endowed with a teleparalMism, 
one can use scalar wave functions instead of such densities, because tele- 
parallelisms give rise to natural measures. In fact, the Maurer-Cartan differential 
form gze, corresponding to arbitrary non-vanishing form e of maximum degree 
on V, does not vanish anywhere and, consequently, it gives rise to a measure 
zX on Q: 

I f (q )dA(q)  = f f a e  (2.23) 
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It is unique up to a non-essential constant factor. 
Hence, the theory can be formulated in Hilbert space L2(Q, £x) with the 

natural scalar product 

(2.24) 

'Position variables' are described by hermitean operators which multiply 
elements ofL2(Q, d 0 by measurable bounded functions C: ~vI, = C~.  The 
second, very important class of physical quantities, is connected with infinitesimal 
mappings, i.e. vector-fields on Q. Let X be a vector-field on Q and O [X] its 
'divergence': 

x~'aae = p IX] a e  (2.25) 

Transformation properties of 1/2-densities imply that the physical quantity 
corresponding to X should be described by the following operator (cL Mackey 
(1963)): 

h X h /~[X] = ~ +~.iP[X]=~(X+½P[X]) (2.26) 

Obviously, the natural domain ofF[X]  consists of differentiable functions 
in L2(Q, A). The additional, non-differential term (h/2i)p IX] is due to the 
non-invariance ofsze and zX with respect to X and assures P[X] to be formally 
self-adjoint, 

( XIrl [ F I X ]  ~I/2 } = ( /~ [X]  l~ 1 [ xt/2 } (2.27) 

for arbitrary 'Iq, xI' 2 E C~(Q). 
Especially important are physical quantities corresponding to the Maurer- 

Cartan vector-fields. We will write F[v], P [v] instead ofF[av], ,o [av] respec- 
tively. Let us notice that for arbitrary v E V, 0 Iv] is constant. 

The quantum Poisson brackets of the position variables and Maurer-Cartan 
quantities are exactly the same as the classical ones (cf. Proposition 2.2). 

Proposition 2.4 
Let u, v be arbitrary vectors and C, D arbitrary smooth functions on Q. 

The following commutation rules are satisfied 

1 [P[u],/'[v] l = P[ [u, v]] (2.28) 
/~i 

- -  = ~ U .  
hi d] 

1 ^ A 
h7 [COl = 0 

where all operators are assumed to act on C~(Q). 

(2.29) 

(2.30) 
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Now let (Q, G, f )  be a homogeneous space. The left action of G on Q gives 
rise to some unitary representation of G in L2(Q), denotes as g~-+ W(g). 
Operators W(g) are given by the Mackey formuta: 

W(g) = k / [O(g-1) f (g -1 , .  )* (2.3 I) 

i .e.  

(W(g)~)(q) = [D(g-1)]l/2"~(f(g -1, q)) (2.32) 

where D(g) is the 'determinant' o f f (g , .  ): 

; (g- l , .  )* ~e = D(g)~e (2.33) 

(The n-form ~ze describing the measure A is assumed to be positive with 
respect to the chosen orientation on Q.) When G acts on the right, g ~, W(g) 
is an anti-representation. 

Obviously, F[v] are infinitesimal generators of IV. I f  (gt : t E R} is a one- 
parameter subgroup of G, generated by v ~ 9, then: 

1 d 
hi dt (W(gt)~)t=° =/~[v]~ 

for arbitrary • E C~(Q). 
The mechanical system becomes fully described when its dynamical struc- 

ture, i.e. hamiltonian, is known. In physical problems which present interest, 
the hamiltonian, or at least its kinetic part, is built algebraically of quantities 
connected with the teleparalletism, i.e. of functions F[u] on the classical level 
and operators/~[u] in quantum theory. These quantities give rise to the local 
kinematical symmetries of a system (on the almost group spaces these 
symmetries become global). In the special case of interactions with maximal 
symmetry, hamiltonian is given by some Casimir invariant of a local group 
of kinematical symmetries. 

Example 2. Ia. The Mechanics in Linear Spaces 
Let Q be an open subset of a vector space II. ?~v: TV-+ V x  V, or, in short, 

?~, denotes the canonical diffeomorphism of TV onto V x V in the sense of a 
natural differential structure on V (cf. Abraham (1967)). It gives rise to the 
natural teleparallelism on Q denoted as AQ : TQ -+ V, or, briefly, A. 
Obviously 

A = pr2 o )~v[ TQ 

wherepri: Vx V-* V, i = 1, 2, is the canonical projection of the cartesian 
product onto its ith component. Obviously, tA = X ] TQ. Generalised velocities 
and momenta are identified with elements of V, V* respectively. A is closed 
and the corresponding Lie algebra is commutative. Hence A-velocities reduce 
to the usual holonomic velocities 

dp 
A o p '  = -  

dr 

being the special case of (2.1) with L,~ = V, 0~ = Mv. 
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Example 2. lb. The Mechanics in A ffine Spaces 
Holonomic teleparallelisms, with which we are dealing, in practical problems 

are connected with affine structures rather than with linear ones. Obviously 
the difference between these two cases is of a theoretical rather than a technical 
nature. 

Let (M, V, -+) be an affine space: M is a manifold, V-linear space of trans- 
lations (free vectors) on M and ' - ;  is a mapping o fM x M onto V satisfying the 

t 

usual axioms (cf. Bourbaki (1955) and Slebodzinski (1970)). For arbitrary p, 
q E M, ~ E V denotes the unique translation carrying p over into q. 

Any p E M gives rise to a diffeomorphism tp:M-+ V such that tp(q) = pq. 
Now let Q be an open subset of M. We have the following natural teleparallelism 
AQ. : TQ -~ V denoted briefly as A : 

AQ = Av  O Ttp i TQ 

This definition is correct because AQ does not depend on the choice ofp. 
Obviously,AQ is holonomic. 

Example 2.2. Non-Constrained Rigid Body 
Let (E, V, -% g) be an euclidean space, i.e. (E, V, ~)  is an affine space and 

g E  V* ® V* the metric tensor on the space of translations. LetF(V,g)  
denote the manifold ofg-orthonormal frames in V. The configuration space 
of a rigid body is given by the cartesian product Q = E x F(V, g), where E 
describes the translational (orbital) degrees of freedom and F(V, g) gives an 
account of internal (spin-like) phenomena. Hence, the theory reduces to 
Example 2. lb and the example below. 

Example 2.3. Rigid Body Fastened at One Point 
Let us consider a rigid body without translational degrees of freedom, i.e. 

fastened at some point p E E. Its configuration space {p} x F(V, g) identifies 
naturally with F(V, g). There exist two natural homogeneous-space structures 
on the manifold F(V,g). Let O(V,g) C GL(IO denote the group ofg- 
orthogonal mappings (i.e. linear isomorphisms of V preserving g) and 
O(n) C GL(n), the group of real orthogonal matrices. Both groups act on 
F(  V, g) via mappings l : O (V, g) x F(V, g) -+ F(V, g), r : O (n) x F(V, g) -~ 
F ( V , g ) :  

I(A, ~) = (A~I . . . .  ,A~on) 

r(a, ~) = % d l  . . . . .  ~i~1), . . ., ~ ja~)  

where ¢ = (~1 . . . . .  ~0n). Obviously (F(V, g), O(V, g), l) and (F(V, g), O(n), 
r) are homogeneous spaces; l acts on the left and r on the right. These actions 
give rise to teleparalMisms: 

at: TF(V,g) -~ [](V,g),  a t :  TF(V,g) -~ U](n), where [](n) 

is the space of skew-symmetric matrices and [] (V, g) consists of g skew- 
symmetric linear mappings (i.e. (g, av ® u ) = - (g, v ® au ) when a : V -+ V 
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belongs to D(V,g)). ~2 l and ~2 r non-holonomic velocities are equal to the 
ordinary angular velocities referring to the laboratory and co-moving frame 
respectively. Similarly, 2; 1 and 2;r momenta describe the internal angular 
momentum (spin) in terms of laboratory and co-moving frame respectively. 

3. Configuration Space o fan Affinely-Rigid Body 

Let us commence with some notions used in the modern theory of con- 
tinua which, in the main, were elaborated by Toupin (1967). 

Configurations of the medium are described by diffeomorphisms ¢ : N-~ M, 
where M is a physical space and N the so-called material space. The configura- 
tion ~ is to be understood in such a way that an X material point occupies 
the position ~ (X)~M.  When particles are 'marked' by their initial positions 
then N = 34. 

Let Dif (N, M) denote the set of all diffeomorphisms of N onto M. Instead 
of Dif(N, N), Dif(M, M), abbreviations DifN, DifM will be used. Dif(N, M) 
carries two natural homogeneous space structures with transformation groups 
DifM, DifN. These groups act on Dif(N,M) as follows: 

~+~A o ~  (3.1) 

~+~ ~oB (3.2) 

According to (3.1) and (3.2), DifM acts on the left and DifN on the right. 
Obviously, groups DifM, DifN do commute when acting on Dif(N, iv/). Sym- 
metries of physical space and the corresponding conservation laws are formu- 
lated in terms of (3.1); similarly, transformations (3.2) are used when describing 
symmetries of the medium (cf. Toupin (I967) and Rogula (1966)). 

Dif(N, M) is an infinite-dimensional configuration space of the medium. 
The theory of an affinely-rigid body presupposes affine space-structures in 

both N and M. Let (N, U, ~) ,  (M, V, -~) denote the corresponding affine 
spaces (cf. Example 2.1b). Using the same symbol '-+' to denote vectors in 
different affine spaces does not lead to any misunderstanding consequently, 
in what follows, this abbreviation will be used. Let us now fix some additional 
notations of affine objects. 

Affine spaces (U, U, - ' ) ,  (V, V, -~) are understood in the usual sense of 
affine geometry on vector spaces: 233 =y - x. Af(N,M) denotes the set of 
affine mappings of N into M. L(~) E L(U, V) denotes a linear mapping of U 
into V, corresponding to ~ E Af(N, 340" ~ =  L(~)p--" d. Obviously, 
L : Af(N, M) --~ L(U, V) is an epimorphism. 

Af(N, V') is a linear space with respect to the natural linear operations on 
mappings which take values in the vector space V. Af(N, 34) carries a natural 
affine structure, its space of translation is just Af(N, V). When F, G E 
Af(N,M), then F-~ EAf(N,  I 0 is defined by: 

FG(p) = F(p) G(p) 

for arbitrary p E N. 
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Configuration space of  an affinely-rigid body could be defined as Z = 
A f  I(N, M), the set o f  affine isomorphisms of  N onto M. Z is open in 
Af(N, M). Consequently our problem reduces to Example 2.lb.  The groups 
of affine isomorphisms of  N and M act on Z according to (3.2) and (3.1). 

Having practical applications in view, we will start with a slightly modified 
model of the configuration space. I~ t  us distinguish some material point 
O E N ,  e.g. the centre of  the mass. It gives rise to the affine isomorphism 
Yo : A f(N, ~ -+ M x L( U, V), where L(U, V) is the space of  linear mappings 
of  Uin to  V. For arbitrary F E A f ( N , ~ ,  

Yo(F) = (F(O), r.(F)) 

Yo maps the open subset Z =AfI(N,M) onto Q = M  x LI(U, V), where 
LI(U, V) is the manifold of  linear isomorphisms of  U onto V. Finally: 

The configuration space of  an affinely-rigid body is defined as a manifold 
Q = M x LI(U, V). Therefore our problem reduces to Examples 2.1 b (what 
concernsM) and 2.1a (LI(U, V)). 

The factor M in Q describes the orbital degrees of  freedom, i.e. the motion 
of distinguished particle 0 E N. LI(U, V) gives an account of  internal degrees 
of freedom, i.e. affine rotations around the fixed particle O. When U = R n, 
then LI(U, V) identifies naturally with F(V),  the set of linear frames, and Q 
with M x F(V). However, the formulation in terms of abstract linear spaces and 
manifolds LI(U, IT) is more convenient and geometric. 

Let us now investigate the internal degrees of  freedom, i.e. the configura- 
tion space W = LI(U, V). Hence we impose the constraints which forbid the 
point O E N to move in M. W carries three natural teleparallelisms: 

(i) W is open in the vector space L(U, V). Hence, it is endowed with the 
closed, integrable teleparallelism Aw: TW-+ L(U, V), denoted in short, 
by A (cf. Example 2.1a). tA : TW-+ W x L(U, V) denotes the corre- 
sponding natural identification. 

(ii) The linear group in V, GL(V) acts on W=LI(U, V), according to (3.1), 
+~ A~ = A o p. When endowed with this action W becomes a homo- 

geneous space with trivial isotropy groups (a group space). This 
structure gives rise to the non-holonomic teleparallelism 

~21: TW-+ L(V) 

where L(V), the space of  linear endomorphisms, is identified in a 
natural way with 8~ (V), the Lie algebra of  GL(V). 

(iii) GL(U) acts on W according to (3.2): ~ ~ ~B = ~0 o B. The corresponding 
teleparallelism will be denoted as 

~2r : TW ~ L(U) 

Teleparallelisms ~2 z , ~2 r become very simple when expressed in terms of  
A. In fact let us put co t = ~ t  o t~ l, co r = ~2~ o t~ t . Then 

cJl(~,~) = ~ o ~,-t, cot@, ~) =,p-1 o ~ 

(cf. S tawianowski (1974)). 
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A gives rise to the integration: f+> ff(¢)dO(~o), which coincides obviously 
with the invariant Lebesgue integration on the vector space L(U, V). 

Both the teleparallelisms ~1, g2r lead to the same measure A on W. This is 
due to the unimodularity of linear groups (cf. Maurin (1968)). Obviously 

d~(,~)  = I ~ 1-" 
dO(~p) 

where [ ~0 J denotes the determinant of the matrix of ¢ with respect to some 
linear bases (the changing of bases results in the changing of normalisations 
only). 

The Lebesgue measure is invariant under translations in L(U, V) but not 
under the action of linear groups on GL(U), GL(V) on L(U, V). Conversely 
A is GL(U) and GL(V) invariant, being at the same time non-invariant with 
respect to the local action of the abelian group L(U, V) on W. 

Now let us write down the Maurer-Cartan vector-fields of the teleparallelisms 
A, ~2t, ~2r. Let a E L(U, V), ~ E L(V), ~ E L(U). Then 

(Aa. F)(~o) = (DsoF, a) 

(al. F)(~. ) = (D~oF, o~ o ~o) (fir. F)(~p) = (D~oF, ~o o fl) 

When the matrix elements of  the mappings with respect to some bases {ei} C V, 
{EA} C U are used as coordinates on L(U), L(V), L(U, P), then 

na = a S  O~'A 

4. Classical and Quantum Kinematical Symmetries 
Let us start with internal degrees of  freedom. Quasivelocities g2 z, g2r are 

non-holonomic because the linear groups are nen-abelian. In what follows g2l, 
g2r will be called laboratory and co-moving quasivelocity forms respectively. 
The reason is that cot(~0, ~) is a geometric object in the physical space M and 
cot(s0 , ~) in the material space N. Roughly speaking, g2 l describes the behaviour 
of the body in terms of the laboratory system of reference and g2r in terms of 
the co-moving frame. They are related to each other by means of the con- 
figuration-mapping 

COr(¢, ,~) = ,#-1 o cot('#, ~) o ~ (4.1) 

~t,  Far provide us with an affine generallsation of the well-known laboratory 
and co-moving angular velocities of the usual metrically rigid body. They 
possess the same physical interpretation in terms of the eulerian and co-moving 
velocity fields (cf. Slawianowski (1974)), 

V(~,O(x) = co l (% ~). x v@,~)(X) = cor(~, ~). X (4.2) 
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According to Section 2, quasimomentum forms corresponding to A, g2i, 
f2 r should take values in L(U, V)*, L(V)*, L(U)* respectively. However, the 
spaces mentioned can be canonically identified with L(V, U), L(V), L(LO, 
respectively, via the formula: 

(f, g) = Tr ( f .  g) (4.3) 

Hence, as in the previous paper (Sfawianowski, 1974), quasimomentum forms 
will be defined as mappings: ~ : T*IV-~L(V, U), Nl: T ' IV -~ L(V), 2;~ : T*IV~ 
L(U). Let us put a I = ~ l  o t ~  1 ' o r = G r o t ~  1 . Then 

ol(~, rr) = ~ o 7r or(~, 7r) = 7r O ~ (4.4) 

In what follows, all geometric objects describing teteparalletisms f2~, ~2r 
will be related to IV x L(U, V), IV x L(V, U) rather than to TIV, T 'W,  respec- 
tively. This is achieved via identifications tA : TW -~ IV x L(U, lO, t~ : T'IV -~ 
IV x L(V, U). For example, the action of  groups GL(V), GL(U) and the local 
action of L(U, V) then take the following form: 

( ~ , t ) - ( A  o ~ , x  o~), (~, t)+~ ( ~ o ~ ,  ~ o~) ,  

(~, ~r) *-> (A o ~0, 7r o A- I ) ,  (~, or) <" (~ o B, B - l o  rr), 

(~, ~) ~, (~ + a, ~) 

(4.5) 
(~, ~) ~, (~ + a, ~) 

(4.6) 

The last three formulae describe the extended point transformations in the 
phase space (T, 3'), where T = IV x L(V, LO and dcow = t~ .  3". Infinitesimal 
generators of these transformations, according to the formulae (2.5) and (2.6), 
take the following form: 

Fl[o~](~,lr)=(at(~,1r),o 0 = Tr (~ o 7r o c0 = ~/A rrA/~ L (4.7) 

Fr [/3](~0, lr) = (or(~0, rr),/3) = Tr (~r o ~ o ¢3) = ~ i ~ b ~ A  (4.8) 

F[a](~,  7r) = (rr, a) = Tr(Tr o a) = ~rAiaiA (4.9) 

Obviously, the assignments c~ ** F1 [o¢], ~ +~ Fr [~] are, respectively, repre- 
sentation and anti-representation of  the commutator-Lie algebras L(V), L(U) 
into the Poisson bracket-Lie algebra over the phase space (T, 3'). Therefore 
{FI[~I,Fr [~1) = 0. 

Physical quantities F1 [eli, Fr [~] will be called internal affine momenta, 
laboratory and co-moving respectively. They provide us with an affine 
generalisation of internal angular momenta (spins) of  a metrically rigid body. 
Transformation from the laboratory to the co-moving frame is as follows: 

Fr [t~l (¢, rr) = FI [~ o fi o ~0-1](¢, n) (4.10) 

Now let us turn to the theory with translational degrees of freedom, i.e. to 
the configuration space (2 = M x LI(U, V). 

q~ : TQ-~ V x L(U, V) and It : T * Q ~  V* xL(V, U) denote the natural 
teleparalMism and quasimomentum form respectively. The corresponding 
identification mappings are denoted as ta, : TQ ~ Q x V x L(U, V), 
tB : T*Q -~ Q x V* x L( V, U). 



THE MECHANICS OF AN AFFINELY-RIGID BODY 285 

Among all transformation groups acting naturally on Q, especially impor- 
tant are AfI(M), GL(U). They act on Q as follows: 

(m, ~) ~ A  (A(m),L(A) o ~) (4.11) 

(m, ~p)B-+--ff-~(m, ~,oB) (4.12) 

The action (4.11) of AfI(M) on Q gives rise to the homogeneous space 
structure. Obviously, for (4.12) and GL(U) it is not the case. On the state 
spaces Q x VxL(U,  V), Q x V* xL(V, U), the groups mentioned act as 
follows: 

(m ,~ ; f ,~ )~A  (A(m) ,L(A)o~;L(A)o f ,  L(A)o~ ) (4.13) 

(rn, ~; ~', ~) ~ ( r n ,  ~ o B; ~', ~ o B) (4.14) 

(rn, ~; p, 7r) ~ (A(m), L(A) o ~p;p o L(A)-I, n o L(A) -1) (4.15) 

(m, ~p;p, v.)q-g---~(m, ¢o  B;p ,B -I o 7r) (4.16) 

Lie algebras of A f  I(M), GL(U), will be identified withAl(M, IO, L(U) 
respectively. Let d 6  Af(M, V), ~ E L(b9. The corresponding infinitesimal 
generators F[5~¢], 3U[13] of extended point transformations (4.15) and (4.16) 
on the phase space (Q x V* x L(V, U), t~, 1. .dCOQ) are given by: 

F [ d ] ( m ,  ¢; p, 7r) = (p, d ( m ) )  + (~ o 7r, L ( d ) )  

=(p,d(m))+ Yr(~oorroL(d))=(p,d(m))+Fl[L(d)](¢,~r)  (4.17) 

~#[/31(m, ~p;p, ~) = Tr(~z o ~0 o ~) = Fr[% 7r) (4.18 

Now let us fix some point o E M. Arbitrary d E Af(M, V) is uniquely given 
by a = L [ d ] ,  a = 5d(o).  We then have the following decomposition: 

F [ s J ]  =P[a ]  +Korb [o~] +Kint  [c~] =P[a ]  +K[c~] (4.19) 

where 

P[a](m, ¢ ; p, ~r) = (p, a) (4.20) 

Kin t [c~](rn, ~ ; p ,  ~) = Tr (~p o 7r o c 0 = Fl[c~](P, 7r) (4.21) 

Korb[a](rn,~;p,~r)=(d--~m ® p , e ) = T r ( ( o ~  ® p ) o c  0 (4.22) 

In formula (4.22) the tensor om--~ ® p E V ® V* is to be understood as 
identified with a linear function on L(V) and, consequently, with some 
element of L(V), cf. (4.3). 

Obviously, P[a] is an ath component  of  a linear momentum.  Kor b [e¢] will 
be referred as an o~th component  of  the orbital affine momentum of the body 
with respect to the origin o E M. Similarly, Kin t [~] describes the internal 
affine momentum,  or an affine spin of  the body with respect to the fixed 
material point 0 ~ N. Ko [c~] = Korb [c~] + Kin t [o~] is an c~th component  of 
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the total affine momentum with respect to o EM. Similarly, 9~ [/3] is a flth 
component of  the comoving affine spin. 

Let Qi, QiA, Pi, PAi be canonical affine coordinates on Q x V* x L(V,  U) 
corresponding to some bases {el} C V, {EA} C U: 

-.-> 
om = Qi(rn, ~o;p, rc)ei, p = Pi(rn, ~;p, rr)e i 

EA = eiQiA (m, ~o; p, rr), rrei = EA P4i(m, ~; p, rr) 

Obviously, 

and 

t~ 1. .dWQ = dpi A dq i + dPAi A dQiA 

Kor b [o~] = Korb}Od i = QlPjodi (4.23) 

Kin t [~] = Kint/]od) = Q~P4]c~L (4.24) 
" " " i pA Ko} =Korb ~] +Kint~" = Qipj + QA j (4.25) 

f [ ~ ]  = J{~AB~BA = iQ Bfil3A ( 4 . 2 6 )  

Now let us turn again to quantum mechanics. As mentioned above, the 
manifold LI(U, V) is endowed with two natural measures, A and the Lebesgue 
measure 0 of  the vector space L(U, V). Similarly,M is endowed with the V- 
invariant Lebesgue measure r. Hence we have at our disposal two distinguished 
measures r ® 0, r ® /', on the configuration space Q =M xLI(U,  V). 
Quantum theory canbe formulated inL2(Q,  r ® 0) or inL2(Q,  r ® A). In 
practical problems, L2(Q, r ® O) is more convenient. 

Let Vm denote a derivative at rn ~ M  in the usual sense of differentiating 
" +  O - 1  _ on affine spaces: for arbitrary n@M, Dnm@ tn ) - V r n ~ E  V* where tn(q) = 

nq. Now according to (2.26) operators corresponding to physical quantities 
P[a], Kin t [o~], Kor b [o~] can be written as follows: 

fi 
(/3 [a] g0(m,  ~0) = 7 ( V m ~ ( . ,  ~0), a) (4.27) 

= hn 
(Kin t [cq ~ ) (m,  ~) h (D~oqffm,.), o~ o ~) + -~ Trot 

l 
(4.28) 

h h 
(dorb [~]'~)(m, ~) = T (Vm'{ ' ( . ,  ~p), c~. o--~) + T r e  (4.29) 

where n = dimM. Obviously: 

/£o [c~] =/£orb [c~] + Kint [c~l (4.30) 

Making use of affine coordinates (x i, ~4)  on Q, we have 

P [ a ]  ~ i a : ai~i (4.31) 
= ~ - a  Ox--- 7 

korb>t = ~J~x* a__ ~ , _ j -  , 3x ] + 2i ~ i - o~ iKor b ] (4.32) 
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where 

• 3 + h  . 
Korb9 = h x i  Ox--7 ~-[ ~9 (4.33) 

where 

t i n  t =  7-i  tpJA + 27 a i (4.34) 

kint ~ = h_ ~p~ 3 hn i (4.35) 

Similarly, the co-moving affine momentum is given as follows: 

~t + htz 
(a@[/3] q~)(m, ~p) = -7 (D~o¢(rn,.), ~o o 13) ~[  Tr t3 (4.36) 

In affine coordinates 

where 

2,@[/31 = ~AOUAB (4.37) 

. 3 hn oA 
= + - -  o B (4.38) 

If we formulated the theory in L2(Q, r ~ A) there would not be any non- 
differential terms in operators Korb [a], Kint [a], ~2o [e], J~[/31. However, such 
terms would then appear in P[a]. 

According to formulae (2.31), (2.32) and (2.33), finite actions ofAfI (M) ,  
GL(U) on wave functions are given as follows: 

(U(A) ~)(m,  ~o) = det L(A)-(n+W2~(A-I(m),L(A -1) © p) (4.39) 

( V(B) qO(m , ~o) = det B-nl2 ~(m, ~o © B -1) (4.40) 

The additive abelian group L(U, V) acts locally on wave functions with com- 
pact supports as follows: 

(W(a)~)(rn, ~o) = ~(m, ~o - a) (4.41) 

5. Euclidean Notions. Metrical Breaking of  AJ)Yne Symmetry 

Up to now we have used only affine notions. It was quite sufficient when 
studing degrees of freedom and kinematics of an affinely-rigid body. However, 
in all practical problems, especially in dynamics, we are dealing with euclidean 
concepts. For example, the very definition of kinetic energy is based on the 
metric tensor in a physical space. This gives rise to the breaking of the afore- 
mentioned affine symmetry even before introducing interactions. 

Let us turn the material and physical spacesN, M into euclidean spaces by 
endowing them with metric tensors ~ ~ U* ® U*,gE V* ® V* respectively. 
In what follows, r/will be referred to as the co-moving metric tensor and g as 
the physical metric tensor. 
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Let us take the manifold EI(rhg) C LI(U, V), composed of isometries 
(euclidean isomorphisms) of the euclidean space (U, 7) onto (V, g), when 
~CEI(rsg) ,  then V = ¢*.g. The manifold f f=MxEI ( r l ,  g) C Q is just the 
configuration space of the usual (i.e. metrical) rigid body. The groups of affine 
isometries vZI(g) C A f  I(M) and the orthogonal group O(U, r 0 C GL(U) act 
on ff according to (4.I 1) and (4.I2). Obviously, such an approach becomes 
identical with that presented in examples (2.2) and (2.3) when putting U=R n 
and identify frames in V with mappings o fR  n onto V. 

When ¢ ~ EI(~, g) we are dealing with a deformation. To describe deforma- 
tions, one uses the whole menagerie of deformation tensors, e.g. The Euler 
tensor e = ½(~-1"~7 - g). 

Let the configuration of an affinely-rigid body be (m, ~) E Q and its 
generalised velocity (~', ~) E V x L (U, V). The metric tensors r~, g enable us to 
define symmetric and skew-symmetric parts of quasivelocities co 1 (~, ~) = 

o ~ - 1  cor(~, ~) = ~-1 o ~. Independent components of the skew-symmetric 
part 60} i/'1 =" ½(COlikg ki  - -  COl]kg ki) are just the laboratory components of 
angular velocity. Similarly, co~ ABI = ½(corAc~ cB co B ZlC~4x -- r C j are the co-moving 
components of angular velocity. Symmetric parts describe the deformative 
behaviour. 

Let us now assume a E L(V) to be g-skew-symmetric: (g, av ® u ) = 
-- (g, v ® au ). The generators K [a], Kin t [o~], Kor b [ce] are laboratory compo- 
nents of angular momentum (the total angular momentum, spin and orbital 
anguI~ momentum respectively). The same holds for the quantum counter- 
parts K [a], Kin t [a], Kor b [a]. When/3 E L(U) is r~-skew-symmetric then 2g( 
[j3] (on the quantum level - ~f'[~]) is a ~-th component of the co-moving 
internal angular momentum. 

We will now analyse the structure of  the kinetic energy from the point of 
view of euclidean geometry in M. Let the positive, regular measure # on the 
material space N describe a mass distribution in the body. Inertial properties 
of the body are described by its total mass, M = fN dl~ (translational, i.e. 
orbital motion), and the co-moving tensor of inertia 

J= f O X  ® OXdla(X)@U ® U (5.1) 

(internal motion). O in formula (5.1) denotes the fixed point of the body (cf. 
Section 3). The total kinetic energy T equals the sum of the kinetic energies 
of all infinitesimal elements of the body. To give an account of the parametric 
dependence of T on g we will make use of the notation g ~ Tg when needed. 
Assuming O to coincide with the centre of  mass, 

o x  d (X) = 0 (5.2) 
N 

we have 
M 

Tg(m,~; f ,~ )=½(g , (~  ® ~) .J)+--~(g ,~  ® ~) 

= ½gii~iA~lB JAB + --fgii~ ~ (5.3) 
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Now let us make the natural assumption that J ~  U ® U is non-singular, and 
denote its reciprocal tensor as i E  U* ® U*. Let the lagrangean be of the 
form 

L : T g - V  

where the potential V depends on the configuration only (no magnetic inter- 
actions), The corresponding Legendre transformation, ~7:(2 x V x L(U, V)-> 
Q x V* x L(V, U), is then reversible and the kinetic term of the hamiltonian 
y g  = Tg o ~o-1 has the following form: 

~"g(m, ~o;p, rr) = 1 (ag, (~. ® g ) . g } + _ _ ~ ( p  ® P , g )  

1 

= ½ & ~ g "  + p::g': (5.4) 

where ~ ~ V ® V is reciprocal to g One can also write 

Jg = ½ J ABpAipf~g ij * - ~  PiP]~ j (5.5) 

(where PAl, Pj are generalised momenta introduced in Section 4). The metric 
g breaks the affine symmetry AfI(M). 3-g is invariant with respect to the  
subgroup of isometries gI(g) only. Excepting angular momenta, the affine 
momenta fail to be constants of motion even when there are no interactions 
(V = 0). In fact 

{ f e ,  KI l l }  = ~ ~ ~ (5.6) 

The quantum operator of the kinetic energy is as follows: 

h2 ~ a2 /,2 .. a2 

- 2 d~giJa¢~ a:~ -~gqax 'ax /  (5.7) 

(cf. Section 4). 
The symmetry properties of Tg are exactly the same as those of the classical 

quantity ~ 'g.  Replacing in (5.6) all classical quantities by the corresponding 
operators and the classical Poisson bracket by the quantum one we obtain true 
equations. 

Starting with the same degrees of freedom and kinematics of an affinely- 
rigid body we can construct another, quite alternative, dynamical model with 
affinely-invariant kinetic energy. Obviously, from tile point of view of the 
usual mechanics, such a model is quite non-physical. However, it enables us to 
understand the structure of  the physical model in more detail. It can also be 
useful when studying physical theories in amorphous space (cf. e.g. Bergmann 
& Brunnings, 1949). For example, it would be worthwhile reformulating the 
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whole of mechanics and physics, on the grounds of amorphous affine geometry, 
without any metrical notions. It is interesting that in such theory the extended, 
or structured bodies, are more natural than the material points. In fact, when 
working with material points, we have no 'distance-like' scalar invariants 
which could be used as arguments in a potential energy of mutual interactions. 
On the other hand, when we consider extended, or structured bodies, such 
affine invariants do exist. Hence, it is above all mechanics in amorphous space 
which needs the notion of an affinely-rigid body. Also, an amorphous 
dynamical model of an affinely-rigid body is interesting from the point of 
view of pure mathematics and rational mechanics. 

Both models- 'physical '  and 'amorphous ' -become asymptotically 
equivalent in the case of  infinitesimal deformations. 

The main ideas of the 'amorphous' model are as follows: The physical 
space M is endowed with an affine geometry only (no fixed metric). In con- 
trast, the material space N is assumed to be euclidean, i.e. endowed with the 
metric tensor ~ E U* ® U*. The last assumption is quite natural; identifying 
configurations with affine flames (by means of main axes of inertia), we 
identify U with R n at the same time. Hence, the natural Kronecker-metric in 
R n induces some fixed metric on U. 

Arbitrary configuration (m, ~o) C Q of the body gives rise to the metric 
tensor g(~) = ~ -  1.. r/E V* ® V* in the physical space M. All distances inM 
will now be measured by means of the configuration-dependent (and, con- 
sequently, matter-dependent) tensor ~p ~ g(¢). Putting g(¢) instead o fg  into 
(5.3) we obtain just the 'amorphous kinetic energy' T n : 

M 
Tn(m,~ ; f ,~ )=½(g( tp ) , (  ~ ® ~ ) . J )+-~(g (~p) , f  ® ~) (5.4) 

One can easily show that 

Tn(m , ~o; ~, ~) = ½ ( rt, (COr(~, ~) ® COr(~p, ~))J) + M (  7, X(% f) ® X@, f))  
(5.5) 

where, according to formula (3.2), X(~, ~') = ¢-1. ~ is a translational quasi 
velocity corresponding to the action of the additive abelian group U on 
Z = A f I ( N ,  M). In our formulation, based on Q = M x LI(U, V), this action 
has the form: 

(m, ~p) ~ (r, ~0 ), whe re rn---~ = ~. u (5.6) 

According to (3.2), quasivelocities X(% ~'), COr(~0, ~), taken together, form a 
co-moving affine quasivetocity corresponding to the right action of A f I ( N )  
on Z. Similarly, ~', co~(~, ~) together form a laboratory affine quasivelocity 
connected with the left action of A f I ( M )  on the configuration space. We did 
not mention (5.6) and X in the previous sections because the translational 
quasivelocity is only needed when studying T n. Roughly speaking, X@, ~') 
describes an orbital velocity in terms of the co-moving frame. Making use of 
affine coordinates we obviously have 
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i n  ~.2 A ~.2 BD jCD m ~ A ~.B (5.5a) 
Trl = ~ AB r C r + 2 rtAB 

The most essential property of T n is its invariance under the whole group 
A f I ( M )  of laboratory affine symmetries. 

Now let us assume again the Lagrangian to have a form L = T n - V, where 
V is velocity-independent. The Legendre transformation Aathen leads to the 
following kinetic term J-,7 = Tn o se  -1 of the Hamiltonian, 

~,,*t 1 "~ ~ / .A  .~B C D  l ..-ra - -  CD = g a A B J ~  Ca~ D~'/ + ~"CU...qPD'/7 (5.7) 

where ~a A describes the co-moving orbital linear momenta p: 

~ A  = Pi~°ia (5.8) 

Obviously, ~A are infinitesimal generators of (5.6). The aforementioned 
invariance of Tn under physical affine transformations is reflected by the 
following equations: 

{3-n, K/j} = { J ' n , P i )  = 0 (5.9) 

Quantum counterparts of (5.7) have a form 

Y',~ = ½ Y A ~ S a c J " ~ o r F  ° + ~ ,, .. c D (5.10) 

where 

z ~x i 

Invariance properties of (5.10) are exactly the same as those of (5.7): 

[~'rl, K//"] = [Zri ,Pi]  = 0 

On the other hand, Tn still fails to be invariant under the right actions of 
A f I ( N )  on Q. It is invariant only under the isometry subgroup o°[(r~) C 
A f  [(N).  

We conclude this section with a short philosophical remark. From the 
point of view of rationalistic a priori, the above 'non-physical' dynamical 
model based on the 'amorphous' kinetic energy Tn and configuration- 
dependent metric g(~0), seems to be more consistent than the physical one. 
In fact, in the amorphous model, only dynamic interaction is able to break 
the affine, kinematical symmetry of degrees of freedom. The theory of 
dynamical systems on Lie groups (cf. Hermann (1972)) could profit greatly 
by the investigation of such a system. 

6. Towards Relativistic Theory 

Relativistic reformulation of the problem needs separate treatment. Here, 
we restrict ourselves to some general, guiding remarks. 
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We are dealing with two kinds of degrees of freedom: Orbital and internal 
ones (motion inM and in L(U, V) respectively). It is possible to formulate the 
theory in which both kinds of motion are relativistic. However, it is hard to 
imagine constraints which would be able to keep the body affinely-rigid when 
its elements move relativistically with respect to the centre of mass. Besides, 
an infinite number of degrees of  freedom is then involved because of the 
retardation and field-like mechanism of relativistic interactions. 

It  is much more easy to formulate a 'mixed' theory in which only orbital 
motion holds in a relativistic way. Retardation of the internal motion is 
neglected and all internal phenomena are referred to the proper time of the 
centre of mass. Such theory is able to describe small test bodies. 

Many authors tried to include gyroscopic degrees of freedom into relativity 
along such lines (cf. Schild & Schlosser, t 965;Kfinzle, 1972). The approach 
we propose below is similar to those of Schild-Schlosser and Ktinzle. 
Obviously, we have more degrees of freedom (six deformative degrees in 
addition to three gyroscopic). 

For the sake of simplicity we restrict ourselves to special relativity. 
Essentially, passing over to a curved space-time presents no difficulties. We 
remain on the classical level, for problems appear when one tries to quantise 
the theory. 

Obviously the approximation neglecting the retardation in the internal 
motion does not break relativistic invariance. The theory is quite consistent 
and formulated completely in terms of Minkowskian geometry. 

Let us briefly sketch the main ideas of  the model. To derive the equations 
of motion we will make use of the homogeneous dynamics based on con- 
straints in a symplectic manifold. We follow Dirac (1950, 1951, 1958), 
Tulczyjew (1968), Ktinzle (1969), Synge (1960) and Sniatycki & Tulczyjew 
(t  971). They have formulated the only satisfactory method from the rela- 
tivistic point of view. 

Let (.12, o//, g) be a four-dimensional Minkowskian space, (X, a//) an affine 
space and g E ~t'* ® ~//* a metric tensor with hyperbolic signature ( + - - - ) .  

We will now construct an extended configuration space of the body (cf. 
Kfinzte, 1972), i.e. the space of all possible events (physical situations). This 
can be achieved in several equivalent ways. According to the ideas of Ktinzle 
(1972) and Schild & S chlosser (1965) we should make use of affine frames 
in X, consisting of one unit time-like vector and three space-like vectors 
orthogonal to the time-like one. However, we prefer to use the notions intro- 
duced in Section 3. 

The material space is still assumed to be an euclidean space (~'~, U, ~), 
where dim Jg'= 3 and rl E U* @ U* is a metric tensor. Hence, generalised 
events (situations) could be described by affine monomorphisms (injections) 
of ~/ ' into X, with space-like images. However, it is much more convenient to 
divide the motion of the body onto the orbital motion of some fixed material 
particle O EJV" (the centre of mass, for example) and the internal, relative 
motion with respect to O (cf. Section 3). Therefore, an extended configura- 
tion of an affinely-rigid body is a differential manifold 
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~= X x LMs( U, ~ ) 

where LMs(U, ~ll) consists of all linear monomorphisms of U into ~g, with 
space-like images (~* .g is negatively defined, provided ~p E LMs(U, ~ )). To 
return to the notation of S child-Schlosser and Ktin zle, one should put U =R3. 
The natural basis of R 3 is then mapped by ~ ~ LMs (R 3 ~ )  onto a space-like 
triad in ~,, which can be uniquely completed to a base in s//(when the 
direction of time is fixed.) 

A situation (event) (x, ~) E q,t is to be understood as follows: (i) x x X is a 
space-time location of the fixed point O c,/V', (ii) a material point A E jV'is 
situated in__~ace-time in such a way that its radius-vector with respect to x 
equals ~. 014. 

On the sixteen-dimensional manifold ~ ,  the linear group GL(U) and the 
affine group AfI(X) act naturally, according to the formulae: 

(x,W)~A (X, WOA ) AEGL(U) (6.1) 

(x, ~ ) ~  (B(x), L(B) o ~) B E AfI(X) (6.2) 

Especially important are the following subgroups: rporthogonal group 
EI(~?) C GL(U) and the Poincare group ~I(g) C AfI(X). Finally, the abelian 
(additive) group L(U, °-ll) acts locally on ~': 

(x ,~)~(x,~+~),  ~EL(U,~II) (6.3) 

°#is an affine space, hence, instead of T~,  T*°'3 t, the manifolds ~ r  = 
~tx Sll x L(U, ~ ), ~= O21x stl * x L( ¢ll, ~0 will be used. Obviously, L(q/, U) 
will be identified with L(U, s / / ) .  via the formula (f ,  g ) = t r ( f o  g). Natural 
identification will be denoted as: 

TL:O~L~T~, T :~ -+T*~ .Dim~L  = d i m ~ =  32 

The symplectic manifold (~ ,  T'doozy) will be used as an extended phase 
space (super-phase space) of the problem. 

Let x u, QuA Pu, Pau be canonical coordinates on ~ corresponding to linear 
bases {EA} C U, {el} C ~[[ and to some fixed origin o ~ X ( c f .  Section 4). 
Obviously, 

T*co~= Pu dxu + p4# dQUA 

Constraints corresponding to equations of motion will be introduced in two 
steps. We commence with the construction of the so-called kinematical con- 
straints J r ' .  They do not describe interactions, rather they define the proper 
physical degrees of freedom. In the theory of the relativistic gyroscope these 
constraints are achieved by imposing the orthogonality condition on the 
orbital 4-momentum and the triad of the space-like vectors of the tetrad. 
This is the only natural way to divide the history of the body onto equivalence 
classes of simultaneous events. Such a construction of kinematical constraints 
does not presuppose any metric structure in X. When the total electric charge 
of the body, or the external electromagnetic field, vanishes then 
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J r ' =  {(X, ~0;p, or) : ~p*p = p  o ~0 = 0} (6.4) 

Obviously, such constraints are non-holonomic because they restrict the 
canonical momenta when positions are fixed. In coordinates 

,~g= {z E ~ :  qSA(Z ) = 0} (6.5) 

where 

cb A = puQUA (6.6) 

Obviously, {q~A, ~B} = 0, hence ~ is what Dirac and others call 'first-class 
constraints' (cf. Dirac, 1958; Sniatycki, 1973). Therefore v g  is foliated by 
three-dimensional singular fibres (because codim .A¢ = 3, dim .A'= 29). 

Interactions are described by imposing additional, non-holonomic con- 
straints. All is based on the assumption that the energy of internal motion 
modifies the mass of the body. Let us introduce a function q5 : ~  R given 
by 

eb(x,~;p, zr)=(p ® p,~>-(m+Hi)Z=pup u - (m+Hi)  2 (6.7) 

Hi describes the energy of internal motion (related to the proper time of the 
centre of the mass) and M = m + Hi is the total observed mass of the body 
(in such units that c = 1). The shape of Hi depends on the details of the 
dynamical model. For example, when there are no external fields and only 
elastic internal phenomena are involved, one can then expect 

Hi = ½f4BpAupBv (g.UV pUpV ] + p2 ] V(guvQUAQ B) (6.8) 

where the potential V depends on the Green deformation tensor and J is the 
co-moving tensor of inertia. 

Dynamical constraints are given by 

M = {z @ ~ : qo A (z) = 0, ~(z) = 0} (6.9) 

Obviously, d imM = 28 (codim M = 4). Dynamically allowed motions are des- 
cribed by curves tangent to the singular foliation K(M) of the constraints M. 
If k is an arbitrary vector tangent to such a curve at z E M, then (k _17z) [TzM = 
0 (where "y = T*dwe). There exists non-physical arbitrariness of gauge-the 
motion starting at z C M is given by the whole fibre of K(M) passing through 
z rather than by any one of the singular curves. In practical problems this 
arbitrariness disappears after projecting the curves to the extended configuration 
space ~J= X x LMs(U, all ). Dynamically allowed motions are then described 
by one-dimensional curves in ~J and the only remaining arbitrariness is that of 
parametrisation of curves. (Usually, the proper time of the centre of mass is 
used as a parameter.) We did not assume external fields, hence, projecting 
motions to X, we obtain the straight lines. When Hi is given by (6.8), {q~, qSA} = 
0, hence M are first-class constraints and fibres of K(M) are four-dimensional. 
The reduced phase space (quotient manifold of M with respect to K(M) 
endowed with the natural symptectic structure) is twenty-four-dimensional, 
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giving 12 degrees of  freedom of an affinely-rigid body. This agrees with non- 
relativistic theory. 

The constraintsM need not be o f / c l a s s  and, in general, when interactions 
are present, they are not. Such situations were studied by Dirac (1958) in his 
generalised mechanics. 

Let us finish with some remarks concerning an affinely-figid body in an 
electromagnetic field. Let A be a vector-potential o f  this field. It seems 
reasonable to replace the functions ~B by q~B [A ], where 

q~B [A] = (Pu - eAu)~uB  (6.10) 

i.e. 

,..g= {(x, ¢ ;p ,  ~r) : ¢ * . ( p  - e A ) = O )  (6.11) 

Similarly, q~ should be replaced by 

~ [A]  = (Pu - eAu)(PU - eAU) - (m +Hi[A])  2 

where Hi [A ] is an internal hamiltonian describing the interaction of  internal 
degrees of  freedom with the electromagnetic field. Hi [A ] depends on the 
mechanical and electromagnetic structure of  the body. 

Instead of  guessing constraints M describing interactions, one could try 
to follow Kfinzle (1972) and formulate the dynamics by means of  the appro- 
priate pre-symplectic structure on the velocity-space #L .  Such an approach 
is more convenient in classical problems. However, when quantising the theory, 
the method based on constraints in # is more natural. 
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